Forensic science experts at Flinders University are refining an innovative counter-terrorism technique that checks for environmental DNA in the dust on clothing, baggage, shoes or even a passport.
The Flinders-led research, led by postdoctoral research associate Dr Jennifer Young, will developed a system to trace the source of dust on suspect articles to match a soil profile of a specific area or overseas country.
“This could help provide evidence of where a person of interest might have travelled based on the environmental DNA signature from dust on their belongings,” says Dr Young, from the College of Science and Engineering at Flinders University.
“This microscopic environmental trace evidence, based on soil geochemical, bacterial and fungal analysis would complement and enhance current forensic intelligence tools,” she says in new research in Forensic Science International: Genetics.
The project has received a State Government Defence Innovation Partnership (DIP) grant of almost $150,000 to develop the intelligence and forensic potential of dust traces for counter-terrorism and national security, working with the Australian Federal Police and university partners (University of Adelaide and University of Canberra) to match the DNA extraction and amplification technique to Australian soil profiles from Geosciences Australia.
Professor Linacre, chair in Forensic DNA Technology at Flinders, says environmental samples serve as ideal forms of contact trace evidence as detection at a scene can establish a link between a suspect, location and victim.
“Environment samples extracted via the ‘massively parallel sequencing’ technology provide biological signatures from complex DNA mixtures and trace amounts of low biomass samples,” he says.
The project is among more than $1 million in funding announced in the fourth round of the Defence Innovation Partnership’s Collaborative Research Fund.
InFoDust: The intelligence and forensic potential of dust traces for counter-terrorism and national security, led by Dr Young, will put the new technique on trial with soil reference data from across Australia provided by partner Geoscience Australia.
This project will utilize a series of soils with contrasting properties to understand the relationship between soil biogeochemical signals and the derived dust signal under controlled conditions, before introducing environmental variables through an ‘in-situ’ experiment.
Massively parallel sequencing is unlocking the potential of environmental trace evidence. Forensic Science International: Genetics, 16 September 2021.
Summary: Massively parallel sequencing (MPS) has revolutionized the field of genomics enabling substantial advances in human DNA profiling. Further, the advent of MPS now allows biological signatures to be obtained from complex DNA mixtures and trace amounts of low biomass samples. Environmental samples serve as ideal forms of contact trace evidence as detection at a scene can establish a link between a suspect, location and victim. Many studies have applied MPS technology to characterize the biodiversity within high biomass environmental samples (such as soil and water) to address questions related to ecology, conservation, climate change and human health. However, translation of these tools to forensic science remains in its infancy, due in part to the merging of traditional forensic ecology practices with unfamiliar DNA technologies and complex datasets. In addition, people and objects also carry low biomass environmental signals which have recently been shown to reflect a specific individual or location. The sensitivity, and reducing cost, of MPS is now unlocking the power of both high and low biomass environmental DNA (eDNA) samples as useful sources of genetic information in forensic science. This paper discusses the potential of eDNA to forensic science by reviewing the most explored applications that are leading the integration of this technology into the field. We introduce novel areas of forensic ecology that could also benefit from these tools with a focus on linking a suspect to a scene or establishing provenance of an unknown sample and discuss the current limitations and validation recommendations to achieve translation of eDNA into casework.